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Abstract 

Agricultural statistics on small farms are critical but still suffer from selection bias and are time 

consuming and costly. Less burdensome and reliable methods are needed. We report on a scalable 

method using a respondent’s knowledge, high resolution imagery, and tablet devices to draw spatially 

explicit plot boundaries. We find the method may work best with respondents that own their plots and 

farmers, and for smaller plots (<1 hectare). We also find incongruence between survey questions and 

spatially-derived data, indicating the importance of incorporating spatial data to verify responses about 

plot characteristics.  
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Introduction 

With over 375 million households relying on small plots for food and livelihoods (FAO, 2014), 

developing cost effective and reliable methods for collecting agricultural statistics is critical for tackling 

sustainable development challenges. Plot boundary measurements in particular are important because it 

enables integrating socioeconomic and productive activity data from household surveys with a variety of 

spatiotemporal remotely sensed data on land cover, species, climate, soil, hydrology, population density, 

and other biophysical features. Recent work by Donaldson and Storeygard (2016) highlight the uses and 

utility of incorporating spatial data into economics and for evaluating challenges in development. But 

current methods for gathering spatially explicit plot boundaries (herein referred to as just plot boundaries) 

for small agricultural plots can be time consuming and costly, resulting in poor data quality and narrow 

sectoral focus (Carletto et al., 2015b). We report on a practical and scalable method for gathering small 

plot boundaries. Our method utilizes high-resolution satellite imagery and the respondent’s knowledge 

about their own landscape to draw plot boundaries on tablet devices. We compare plot characteristics 

from survey data and satellite imagery data and  find incongruence. We demonstrate the utility and 

limitations of the method and make recommendations on operationalizing this method for improved 

integration of spatially explicit information to household survey data.  

Gathering spatially explicit agricultural survey data are critical for advancing knowledge on land 

governance, agricultural productivity, food security, environmental degradation, as well as the human-

nature interactions. For instance, land, especially for the rural poor, is often the primary and most valuable 

asset. Accurate land area measurement is critical to many agricultural metrics, such as yield, productivity 

of inputs, landholding, and extent of land fragmentation (Carletto et al., 2015b). It can also help identify 

land inequality, which is a critical factor in economic growth and civil conflict, and human development 

(Deininger and Squire, 1998; Macours, 2011; André and Platteau, 1998; Baten and Juif, 2013). Spatial 

data can augment household survey data with rich and potentially novel information. For instance, 

measuring multiple observations over vast areas is relatively simple and cost effective, and information 

on environmental changes may be timelier and more accurate compared to household surveys (e.g., rate 

and extent of deforestation (Hansen et al., 2013)). Knowing where household surveys have a comparative 

advantage (e.g., demographics) and where they are limited is important when integrating these data.  

Technical advances, such as the availability, reliability, and cost of using Global Position Systems (GPS) 

devices have reduced the cost of using GPS devices to gather plot boundaries (Goldstein and Udry, 1999; 

Carletto et al., 2015b).1 For instance, Schøning et al. (2005) found land measurements via tape and 

 
1 For instance, the Tanzania Living Standards Measurement Study-Integrated Surveys on Agriculture have collected 
GPS measurements for 25 percent of sampled households, although plots that were not within an hour by any mode 
of transportation were excluded. 
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compass (the traditional method) took three times longer compared to GPS measurements (for a list of 

other methods see Appendix A). But GPS measurements are not a panacea for agricultural statistics. First, 

like the tape and compass method, GPS measurements still require enumerators to physically identify and 

walk around the plot perimeter. As a result, plots outside some predetermined minimum distance to the 

household are often excluded, and this can lead to systematic plot selection bias (Kilic et al., 2017). GPS 

measurements also still suffer from technical limitations. Tree canopy cover, weather conditions, and plot 

size and slope can hinder accuracy of GPS measurements (Keita and Carfagna, 2009, 2010; Fermont and 

Benson, 2011). The accuracy of GPS devices also falls significantly for small agricultural plots (<0.5 

hectares, or 1.2 acres) (Keita et al., 2010; Fermont and Benson, 2011), which is often the primary 

population of interest to researchers and practitioners interested in sustainable development.  

GPS devices have seen limited adoption despite its increasing affordability, and the use of survey 

questions to gather self-reported plot data is still common. But there is a clear cost to relying only on self-

reported survey questions: lower reliability and accuracy (Goldstein and Udry, 1999; De Groote and 

Traorè, 2005; Carletto et al., 2013; Carletto et al., 2015a; Carletto et al., 2015b; Arthi et al., 2017). In 

particular, measurement error in plot size estimation may be driven by the difficult mental calculus 

respondents must perform when estimating plot size (Carletto et al., 2013). Additionally, self-reported 

plot measurements often suffer from “heaping”, which occurs when respondents attempt to estimate plot 

sizes by rounding to discrete values (e.g., 0.31 hectares to 0.5 hectares). Enumerators also may be a 

source of measurement error, as they my be required to convert multiple land measurement units to a 

common unit in large-scale surveys (Fermont and Benson, 2011; Carletto et al., 2015b). While 

measurement error may seem trivial, it has led to substantial debates in the agricultural development 

literature, such as the inverse farm size-productivity relationship (Benjamin, 1995; Bhalla and Roy, 1988; 

Lamb, 2003; Barrett et al., 2010; Carletto et al., 2013; Holden and Fisher, 2013; Ali and Deininger, 

2015).  

An alternative method to gathering data on plot boundaries, and by extension numerous plot 

characteristics, is to utilize high resolution satellite imagery. The potential of satellite imagery to identify 

plots is increasingly recognized by scholars (Keita and Carfagna, 2009; Nelson and Swindale., 2014; 

Carletto et al., 2015b). Until recently, however, satellite imagery has lacked the requisite resolution and 

accessibility to researchers. Indeed, Bilsborow and Henry (2012) note that “very high resolution” satellite 

imagery (<5 meters) is needed to gather useful spatial information for small agricultural plots. Other 

scholars assumed analysts or algorithms would identify plots (Fermont and Benson, 2011; Nelson and 

Swindale, 2013), but this underutilizes local knowledge and creates strong dependencies on very high 

resolution imagery that ultimately still suffers from plot characteristic-driven measurement error (e.g., 

spatial makers for identifying plots). A method utilizing satellite imagery and local knowledge to 
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accurately and inexpensively gather plot boundary data could simultaneously reduce effort and increase 

accuracy, making it more practical to consistently integrate spatial and household survey data. 

In this paper, we report on the enumerator-assisted respondent-driven plot mapping (RDPM) 

method - a method using high resolution satellite imagery on tablet devices with respondent input to 

delineate small agricultural plots. Our method employs an enumerator-assisted respondent-driven 

mapping exercise to identify plots using off the shelf software and hardware and low cost satellite 

imagery. We do so by pre-loading higher resolution imagery (2.5 m resolution) on tablet devices with 

GPS chips, and having survey respondents identify their plots with respect to familiar landmarks (e.g., 

their own home, local schools, roads, rivers) to draw plot boundaries. To date, we know of two efforts 

that utilized similar methods (Cadena, 2013; Vale and Stabile, 2016), although one focused on sampling 

and the potential selection bias introduced by their methodology (Vale and Stabile, 2016), while the other 

utilized rich cadastral data (Cadena, 2013). Our study setting is in a data poor environment, where land 

records are not digitized, land transactions are often informal, and information is localized. We describe 

the process and utility of our method, and also report on challenges and potential limitations of its use. 

We tested our method with 540 households from 30 villages in central Kenya covering 744 plots.  

 

Materials and Methods 

We use data from household survey, satellite imagery, and data collected via RDPM. Data come 

from a broader study on livelihoods, farming practices, soil erosion, and water quality in the Upper Tana 

watershed. We first describe the study site, the household survey, and the methodology. We then briefly 

discuss how these data were merged and analyzed. 

 

Study site 

Our study site covers an area approximately 120 square kilometers consisting of 68 villages in the 

Upper Tana basin north of Nairobi in central Kenya. Data were collected from September-October 2015. 

We employed a two-stage simple random selection process. In the first stage 30 villages were randomly 

selected. In the second stage, approximately 18 households per village were interviewed from each 

village. Our final household survey sample consists of 540 households.  

 

Household survey 

The gender disaggregated household survey collected information on household demographics, 

agricultural practices, household and productive assets, water treatment, conservation practices, access to 

markets and credit, community group membership, intrahousehold decision-making, and other topics. 

Importantly, the survey collected detailed information on agricultural plots, such as size, input use, 
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agricultural practices, crop types, and land cover. The survey was administered with tablet devices using 

the CSPro 6.1 computer-assisted personal interviewing (CAPI) software (CSPro 2015). A pair of male 

and female enumerators interviewed each household. For married households, male enumerators 

interviewed the husbands and the female enumerators interviewed the wives.  

 

Enumerator-assisted respondent-driven plot mapping 

RDPM provides a method for collecting plot boundaries from respondents at the residence by 

drawing the plot boundaries on GPS-enabled tablet devices pre-loaded with higher resolution imagery. By 

marrying high resolution imagery with respondent’s knowledge about their own plots and landscape, the 

RDPM allows us to collect spatial data for each plot, even for irregularly shaped plots and plots that are 

far away from the household that may be systematically excluded using other methods (Kilic et al., 2017). 

Because polygons are drawn directly on spatially explicit high resolution images, measurement error is 

solely driven by the enumerator or respondent, and not by technical errors caused by plot characteristics 

(e.g., tree cover and plot slope) and satellite position, signal propagation, and receivers (Hoffman-

Wellenhof et al., 2008; Keita and Carfagna, 2009, 2010; Fermont and Benson, 2011). The RDPM 

arguably saves significant time and effort required by both the tape and compass method and GPS 

measurement by allowing data collection to occur at the household’s residence. 

There are two primary components for the RDPM: high resolution imagery (e.g., 2.5m resolution) 

loaded within mobile GIS software and a tablet device with a GPS chip. We used ArcGIS Collector 

software to collect the spatial extent of each plot during the household surveys. Spatial data are linked to 

the household survey data via unique household and plot identifiers, both of which were assigned during 

the survey. A tablet device (either Android, iOS, or Windows) and a subscription to ArcGIS Online 

(AGO) (an online mapping service from ESRI, http://arcgis.com) are required to implement ArcGIS 

collector. Using Esri’s World Imagery (2.5 meter resolution) map service as the base map made setup and 

implementation simple to cache the imagery to avoid the need for an internet connection in the field.  

The first step in gathering plot boundaries was setting up the AGO server component. A feature 

service (a type of map layer) was published showing the study area boundary, and a second blank feature 

service was created from a shape file to capture desired fields , such as household and plot IDs. Finally, 

AGO accounts were created for each enumerator, and a group was created in AGO to control access. 

We then configured the android tablets for data collection. We used 16 GB micro-SD cards in 

each tablet to store the cached satellite imagery since we did not have reliable data connectivity in the 

field. We then installed ArcGIS Collector and moved the application to the SD card. Each enumerator 

was assigned a unique account to ensure all edits could be tied to a particular enumerator and device. The 

web map was then downloaded to the tablet, choosing the study area as the “work area” and the 
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maximum available scale level (1:4,514). Edits made offline synced with AGO once an internet 

connection was available.  

Enumerators were trained to assist respondents in identifying the location of the agricultural plot. 

Enumerators were instructed to first orient the respondent by centering the map to the respondent’s home. 

Other landmarks in the community, such as schools, also helped orient the respondent. Respondents were 

then asked to identify plots, one at a time, to complement survey data for each plot (e.g., tenure status). 

Enumerators were instructed to not let the respondent actually draw the plot. Field testing revealed 

respondents were often uncomfortable articulating plot boundaries on tablets on their own. As a result, 

respondents were instead asked to clearly articulate the boundaries of the plot while the enumerator drew 

the polygon while being observed by the respondent. Once enumerators drew the plot boundaries, they 

were asked to input the household and plot IDs and repeat the process for each plot. If enumerators or 

respondents made errors, enumerators were instructed to delete and redraw the polygon. At the end of 

each day, enumerators were instructed to wirelessly upload polygon data to the AGO server. This allowed 

timely review of spatial data by the project supervisor so any potential issues were quickly identified and 

fixed. 

 

Merging household survey data and polygon data 

In total, the household survey collected data on 1,160 plots from 540 households. 80 percent of 

these plots were reported as being drawn in the survey (n=932), but in the spatial data we identified 778 

complete agricultural plots. The discrepancy is due to data entry error by respondents in the survey 

(accidentally inputting a new entry for a plot when there were no more plots). In the spatial data, we 

dropped polygons that were clearly erroneous due to enumerator error (e.g., one large polygon covering 

multiple smaller polygons, duplicate polygons) (n=34), leaving 744 polygons. All 744 plots had matching 

household survey data and spatial data, which leaves 376 households total (70 percent of the original 

sample).  

 

Analysis and empirical strategy 

We report three sets of analyses to investigate the feasibility and utility of the RDPM for 

gathering small plot agricultural statistics. All covariates are consistent across each set of analysis and are 

estimated using robust standard errors clustered at the household-level. First, we investigate the 

determinants of successfully drawing plots using the RDPM, which reveal possible limitations and 

selection bias of the RDPM. We estimate a logistic regression such that: 
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where %! = 0(2 = 1	|	,%&', -%&',.&', /') if the enumerator successfully drew a plot with the 

respondent’s guidance and zero otherwise. i, j, and k index respondent, household, and enumerator, 

respectively. ,%&' is a vector of individual (respondent) covariates, -%&' is a vector of household 

covariates, .&' is a vector of plot covariates, and /' is a vector of enumerator indicators. Individual-level 

covariates include information on sex, age, marital status, education, indicator for being the household 

head and being a farmer as their primary occupation. Household-level covariates include data on 

household wealth, household gender composition (percent female), household size, and the number of 

plots the household manages. Finally, plot covariates capture information on whether the household owns 

the plot, indicators for the plot’s primary use, self-reported plot size, and distance from the household to 

the plot. 

Our second set of analyses examines the quality of polygons. We rate polygon quality based on 

two criteria: 1) whether a polygon has clear overlap with structures that indicate measurement error (e.g., 

a polygon cutting through a building or road), and 2) a binary subjective rating of the polygon’s fit to 

remotely sensed imagery (e.g., whether or not the boundary appears to match visible land cover features). 

We create three variables using the two criteria: one variable for each criterion that is coded one for poor 

quality and zero otherwise, and a variable coded as one if a plot had either clear or subjective overlap and 

zero otherwise. We estimate equation (1) above using the polygon quality variables and the same 

respondent, household, and plot covariates. 

In our final analysis we investigate whether there are differences between survey responses and 

data extracted from spatial data. We primarily examine differences in measured plot size from polygons 

and self-reported survey data.2 For land area, we operationalize two variables following Carletto et al. 

(2013): the absolute and relative difference between self-reported land areas and plot boundary land areas. 

The relative difference is calculated as 

(78!9	:8%":;8<	%!";	=>?8 − @=;>AB;8<	%!";	=>?8) @=;>AB;8<	%!";	=>?8⁄ . We estimate the following 

linear regression model:  

 

D!"# = *$ + ,!"#*( + -%&'*) +.&'** + /'*+ + E%&' (2) 

 

 
2 We also assessed correlations on reported and remotely sensed land cover to investigate the congruence 
between spatial and survey data, which is reported on Appendix C. 
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where the dependent variable D!"# is the absolute and relative difference in plot size. For all models, we 

estimated pooled models because we are interested how individual characteristics are associated with 

each dependent variable, but we also estimated household fixed effects model for robustness checks and 

present results in Appendix B. Results are largely similar. 

 

Results 

a. Descriptive statistics 

Survey respondents consist mainly of male household heads (first column in Table 1). Male 

respondents have significantly higher educational attainment and are significantly more likely to be able 

to read, be married, be village leaders, and have occupations outside of farming. 94 percent of households 

own at least one plot, and households manage, on average, 2.2 plots. The vast majority of plots are used 

for agriculture. Potatoes (67%), cabbage (55%), and maize (40%) are the most common crops grown by 

households. Approximately 90 percent of plots are within 10 minutes walking distance from homes. 

Nearly 90 percent of plots are reportedly less than one acre.  

 

b. Who was able to draw plots successfully? 

Approximately 70 percent of households were able to successfully draw at least one agricultural 

plot (second column in Table 1), and respondents and the households they belong to are largely similar to 

the overall sample population (third column in Table 1 for comparisons). Logistic regression results 

reveal that most observable characteristics are not significantly associated with being drawing plot 

boundaries successfully (Figure 1; Table B1 in Appendix B for full model results and robustness checks). 

Respondents were more likely to assist enumerators in drawing plot boundaries if they were farmers (12 

percent), from larger households (2 percent), and owned the plot they were drawing (20 percent). 

Interestingly, many plot characteristics were significantly associated with successfully drawing plots. 

Plots used as a livestock field or cropland increase the probability of being drawn by approximately 12 

percent and 8 percent, respectively. As self-reported plot size and the plot’s distance from the household 

increase, respondents were significantly less likely to successfully draw plots by 2 percent and 1 percent, 

respectively. 

Drawing plots requires familiarity with its boundary and location. For instance, farmers 

frequently visit plots used for livestock fields and crops, so it is unsurprising that these plots are 

significantly and positively associated with complete plot boundary drawings. Further, rented plots may 

be leased on a seasonal basis, and in general renters may be less familiar with a plot’s boundary and 

location. Larger plots are less likely to be successfully drawn (Figure 2). For plot owners, plots are more 

likely to be drawn for plots smaller than 11 acres, and the probability was higher for farmers that owned 
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their plots. The probability significantly decreases once farmers do not own their plot, as plots smaller 

than 6 acres and 4 acres are likely to not be drawn for farmers and non-farmers, respectively. The 

negative relationship between the distance from the household to the plot is unsurprising. The RDPM 

centers maps on the respondent’s home, and plots far from the home may be hard to identify without 

familiar or obvious landmarks. 

 

c. Plot boundary quality  

744 plots were successfully drawn, but the quality of plot boundaries vary. For instance, 15 

percent of the 744 polygons overlap with other polygons, although 10 percent of these polygons 

overlapped less than 5 percent with another polygon. Less than one percent (n=5) of successfully drawn 

plot boundaries had both subjective and objective overlap, and 2.7 percent (n=20) had clear overlap 

(without subjective overlap) and 10 percent (n=79) of plot boundaries had just subjective overlap. Less 

than one percent (n=5) had both subjective and objective overlap. We find that no individual or household 

characteristics are determinants of plot boundaries quality. We do find, however, that distance to the plot 

increases the likelihood of having poor quality plot boundaries (*,!-./012	.4	564. = 0.048, p<0.10. Table 

2), suggesting familiarity with the area around the plot is a determinant of plot boundary quality.  

Panel A in Figure 3 presents a sample of small agricultural plots in the study area. Examining the 

high quality plot boundaries in Figure 3 demonstrates the benefits of using high resolution imagery to 

identify plots. For instance, Panel B shows the RDPM was able to delineate small adjacent agricultural 

plots. Each plot is approximately 0.25 acres (0.1 hectares), well below the threshold of small agricultural 

plots (Keita et al. 2010; Fermont and Benson 2011). The accuracy of the RDPM will likely improve as 

higher resolution data become available. Panel C demonstrates the RDPM’s ability to draw irregularly 

shaped polygons, which correctly excludes non-cropland, such as houses and roads. The plot in Panel C is 

approximately 2.1 acres (0.87 hectares). 

 

d. Comparison of spatial and survey data 

We now turn to examine the subset of plots that did not have clear or subjective overlaps 

(n=650). Self-reported and estimated plot sizes are significantly positively correlated at 0.69 (p<0.01); 

however, the correlation decreases to 0.27 for plots smaller than 1.2 acres. The weaker correlation for 

smaller plots is consistent with what others have found. For instance, Shøning et al. (2005) found 

correlation to be 0.65 overall between GPS measurements and tape and compass measurements, but the 

correlation was 0.89 for plots between larger than 1.2 acres (0.5-0.7 hectares), decreasing to 0.12 for plots 

under approximately 1.2 acres (0.5 hectares). Our data also reveal dispersion as plot size increases (Figure 

4), as there is greater variation between self-reported and estimated plot size as the plot size increases 
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(*564.	-!72 = 0.5, p<0.001. Table 2). A possible explanation for this increased difference may stem from 

respondents being unable to correctly identify large plot boundaries. We also find respondents 

underestimate larger plots relative to smaller plots (*564.	-!72= -0.28, p<0.10. Table 2), which mirror 

findings by De Groote and Traorè (2005). Further, consistent with previous literature (Carletto et al., 

2015c), we find “heaping” in the distribution of self-reported plots compared to estimated plot sizes (blue 

line in Figure 4) for plots between 0.5-3 acres. The Kolmogorov-Smirnov test for equality of distributions 

also reveal significant differences in self-reported and estimated plot size distributions (p<0.01). Finally, 

we find the quality of plot boundaries collected via the RDPM does not systematically differ by 

observable individual and household characteristics. This suggests the accuracy of the RDPM is robust to 

diverse populations, as it is not contingent on factors such as gender, wealth, or educational attainment. 

 

Discussion and conclusion 

Nearly two decades ago the National Research Council (1998) released a report arguing the 

utility, potential, and importance of integrating spatial data with social science research on socio-

ecological systems and sustainability, and recent work has called attention has echoed this report 

(Donaldson and Storeygard, 2016). Despite advances in technology, accessibility, and affordability, 

agricultural household surveys still rarely gather spatially explicit plot boundaries. Our method for 

collecting spatial boundaries for small agricultural plots addresses shortcomings of other methods by 

utilizing high resolution satellite imagery (2.5 meters) and respondent knowledge to identify their own 

plots on GPS-enabled tablet devices. We demonstrate that there may be distinct advantages to the RDPM. 

For instance, the RDPM appears to perform better for smaller agricultural plots than larger plots. Because 

data were collected inside the household, the RDPM requires less effort from enumerators and 

respondents compared to other methods. Further, the RDPM utilizes spatial data to avoid errors caused 

by, for instance, unit conversion (Fermont and Benson, 2011; Carletto et al., 2015b) by directly 

estimating the plot boundary. As a result, we believe that the RDPM provides a scalable method for 

gathering plot boundaries. Although we compared spatial data with household survey data and found 

reason to believe RDPM data provide utility to practitioners and researchers, further work should assess 

the accuracy of RDPM data via field results and address likely flaws in household survey. If accuracy is 

acceptable, the RDPM provides a new tool for combining household survey data with rich spatial 

datasets. 

Our model estimates on respondents able to draw their plot boundaries suggest the RDPM should 

be conducted with household members most familiar with the household’s plots, such as plot owners and 

farmers. Not doing so may create systematic plot selection bias. While plot selection bias in GPS 

measurements is driven by exclusion criteria (Kilic et al., 2017), such as the distance and accessibility of 
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the plot from the home, the RDPM relies more heavily on the respondent’s knowledge of their local 

geography. Further, plots covering more land area may require particular attention. Although this is a 

minor concern for our study population because the average self-reported plot size is smaller than one 

acre, this may especially be an issue for plots that are infrequently used because respondents may not be 

familiar with plot boundaries, and unfamiliarity may increase with plot size. Having multiple household 

members help identify and draw plots when employing the RDPM may increase the likelihood of 

successful plot drawings. This would utilize multiple household members’ knowledge about their 

landscape by, for instance, having the household member responsible for animal husbandry identify plot 

boundaries for livestock fields, or the household member responsible for firewood collection identify plot 

boundaries for forested plots.  

We tested the RDPM in an area that is approximately 120 km2, but we believe the RDPM 

provides a scalable alternative to existing methods, thus enabling more widespread adoption of the 

practice of collecting spatial boundaries for surveyed plots. For instance, survey teams may be deployed 

to specific areas of the country, and high resolution imagery can be uploaded onto tablets for that region 

to efficiently use memory. Alternatively, in countries with reliable and broad mobile phone data coverage, 

imagery can be retrieved during the interview. The increasing quality of freely available satellite imagery 

also creates new possibilities and greater accuracy for identifying small agricultural plots using RDPM. 

Cloud cover may still be an impediment for areas with persistent cloud cover throughout the year 

(Carletto et al., 2015c). While Billsborrow and Henry (2012) did not have a single cloud free image 

covering their entire study area in the 8 year period they examined, this is increasingly uncommon and 

only limits a remote sensing approach. By contrast, the RDPM relies on a patchwork of the latest 

available imagery for each tile, meaning that while a given study area is likely made up of imagery from 

different dates, it is very unlikely there will be areas with no imagery capture in the last year or two.  

Like all methods, however, there are tradeoffs and limitations. While the sample that drew plots 

are largely similar to the overall respondent sample, regression results suggest the RDPM may 

systematically exclude agricultural plots from some subpopulations. We find respondents that are farmers 

and landowners are more likely to be able to identify and draw plot boundaries, and larger plots and plots 

further from the household are less likely to be drawn. We believe having multiple household members 

identify plot boundaries, however, can minimize or eliminate this bias. The RDPM is also subject to 

enumerator error. Our results consistently found some enumerators were associated with lower likelihood 

of drawing plots and poorer plot quality, highlighting the importance of carefully training enumerators. In 

addition, the RDPM may be better suited for some plot or crop types. For instance, identifying specific 

boundaries within an intact forest may be challenging for respondents. Identifying plot boundaries for 

areas that have clear spatial markers, such as rice fields with drainage ditches or non-cropped areas 
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between plots, may be simpler. Despite these limitations in certain contexts, we believe that the overall 

RDPM offers significantly lower cost than GPS measurements. Informal enumerator feedback suggests a 

plot can be drawn in under ten minutes. Further, although we did not formally test the RDPM’s relative 

accuracy to other methods, we believe the RDPM potentially has equal or greater accuracy than GPS 

measurements for small plots because GPS measurements still suffer from errors caused by plot 

characteristics and technical issues (Hoffman-Wellenhof et al., 2008; Keita and Carfagna, 2009, 2010; 

Fermont and Benson, 2011).  

Finally, we believe the RDPM opens new opportunities for merging spatial and survey data 

analysis. For instance, preliminary analyses using this study’s plot boundaries with very high resolution 

spatial data (0.5 meter resolution) identified past sustainable agricultural practices not identified in the 

survey. Ayana et al. (2017) used remote sensing to identify the presence of drainage ditches and ridge-

tillage furrows in this study area and found 69 percent of successfully drawn survey plots contained 

ditches and furrows in the remote sensing analysis even though only 2.6 percent of plots in the survey 

reported having either drainage ditches or ridge-tillage. Further, the RDPM has applications for other 

spatial information. Future researchers may ask respondents to trace the route from their house to the 

market, providing a new way for gathering information on informal road networks. For rural households 

that rely heavily on footpaths, this type of spatial information can only be obtained by relying on local 

knowledge.  

Future work should carefully match survey questions on plots by, for instance, taking into 

account seasonal land use and land cover patterns (e.g., cropland may be temporarily bare after harvest, 

but remain cropland as a land use). This also provides an opportunity to improve analysis on crop yields 

by linking plot boundaries with spatial time series data to determine the proportion of plots used for 

agriculture. Further, the RDPM opens a way to test respondent recall on land cover change or land 

degradation (e.g., overgrazing of fields) for small agricultural plots by comparing survey questions about 

past events to spatial time series data. As new technologies (e.g., micro- and nano-satellites) become 

available, we believe the RDPM will provide an integrated and cost effective method for simultaneously 

gathering spatial and survey data. Smallholder farms remain a critical factor for agricultural production 

across the world (Lowder et al., 2016), and is closely tied to priority development goals, such as food 

security and poverty reduction. Poor quality agricultural data continues to be a challenging factor for 

allocating resources and monitoring progress on development (African Development Bank, 2004; FAO, 

2008; Carletto et al. 2015b). While Carletto et al. (2015b) outline a number of areas for addressing this 

challenge, they note that methodological improvements are a critical pathway forward. We believe the 

RDPM provides a simple, time saving method that can reduce the burden of data collection on 

enumerators and project teams to collect data on plot boundaries, which are critical for understanding 
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agricultural practices, yield, land degradation, and other information necessary for informing development 

policies. 
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Table 1: Descriptive statistics 
 Full sample Drew plot Diff 
 (1) (2) (3) 
Individual characteristics Mean SD Mean SD (1)-(2) 

Female (%) 32 47 31 46 0.12 
Household head (%) 81 39 80 40 1.9 
Age 50 14 49 14 0.44 
Completed secondary school (%) 30 46 30 46 0.30 
Married (%) 78 42 80 40 -1.9 
Farmer (%) 80 40 84 36 -4.6* 
Years farming 24 15 25 15 -1.6 

Household characteristics      

Household size 5.0 1.8 5.2 1.8 -0.14 
Gender composition (% of HH that is female) 39 16 38 16 0.59 
Wealth index 0.0 0.47 0.12 1.9 -0.39 

Plot characteristics (reported)      

Number of plots per household 2.2 1.1 2.2 1.1 0.011 
Own plot (%) 94 22 98 0.46 -3.5*** 
Self-reported plot size (Ha) 0.68 1.1 0.64 0.87 0.039 
Plot used for cropland (%) 87 33 87 34 0.058 
Plot kept fallow (%) 2.6 16 2.4 15 0.17 
Plot used for grazing livestock (%) 5.2 21 5.6 23 -0.47 
Plot used for woodland (%) 2.0 14 1.7 13 0.32 
Plot used for other (%) 3.0 17 3.0 17 -0.074 
Distance to plot (minutes) 5.7 15 2.9 6.0 2.7*** 

n (Households) 540 376  
n (Plots) 1,160 744  

*** p<0.01, ** p<0.05, * p<0.10
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Figure 1: Average marginal effects for logistic regression for drawing plot a 

 
a Coefficients are displayed in Table B2. Bars shows 90% confidence intervals. All models estimated using 
robust standard errors clustered at the household-level and enumerator fixed effects. 
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Figure 2: Predicted probability of drawing the map by plot size, farmer occupation, and plot ownershipa 

 
a Predicted probabilities are estimated with variables are held at their means. Models are estimated using robust standard errors clustered at the household with 90% confidence 
intervals.
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Figure 3: Spatial plots 

Panel A: Sample of plot drawings Panel B: Small agricultural plots 
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Panel C: Irregularly shaped plot 

 



 

 23 

Table 2: Regression results for plot boundary quality and differences between survey and spatial dataa 
 Clear 

overlap 
Subjective 

overlap 
Clear and 
Subjective 

overlap 

Absolute 
difference 
in plot size 

Relative 
difference 
in plot size 

 (1) (2) (3) (4) (5) 
Female -0.42 0.85 0.46 0.03 0.43 
 (1.081) (0.592) (0.597) (0.135) (0.588) 
Age 0.01 0.02 0.01 0.00 -0.00 
 (0.018) (0.011) (0.011) (0.002) (0.011) 
Married -0.83 1.28* 0.83 -0.05 0.47 
 (0.842) (0.607) (0.561) (0.180) (0.578) 
Secondary school -0.49 -0.46 -0.46 -0.00 0.34 
 (0.741) (0.326) (0.312) (0.066) (0.263) 
Is a farmer 1.70 -0.65 -0.35 0.04 -0.03 
 (1.440) (0.438) (0.415) (0.107) (0.264) 
Is HH head -0.63 -0.24 -0.39 0.01 -0.67 
 (1.180) (0.587) (0.572) (0.153) (0.444) 
Asset index 0.09 0.13 0.12 -0.01 -0.08 
 (0.154) (0.087) (0.080) (0.022) (0.086) 
Household size 0.04 -0.10 -0.08 0.01 0.01 
 (0.184) (0.119) (0.105) (0.014) (0.072) 
HH gender composition 1.94 -0.95 -0.22 -0.16 0.49 
 (1.912) (0.963) (0.922) (0.284) (0.927) 
Number of HH plots -0.37 -0.07 -0.11 -0.01 0.09 
 (0.312) (0.145) (0.137) (0.028) (0.122) 
Owns plot - - - -0.70 -0.47 
 - - - (0.639) (0.368) 
Self-reported plot size -0.12 -0.18 -0.14 0.51*** -0.28* 
 (0.315) (0.200) (0.165) (0.142) (0.149) 
Cropland -0.24 0.09 -0.08 0.13 -0.36 
 (0.708) (1.019) (0.800) (0.231) (0.434) 
Forest - - - 0.61 -0.08 
 - - - (0.620) (0.784) 
Livestock field -1.20*** -1.01 -1.14 0.31 0.04 
 (0.409) (1.134) (0.854) (0.365) (0.579) 
Fallow - -0.12 -0.56 0.24 0.58 
 - (1.245) (1.106) (0.251) (0.504) 
Distance to plot 0.02 0.04*** 0.05* -0.00 0.02 
 (0.019) (0.014) (0.025) (0.009) (0.050) 
Constant -3.96 -2.32 -1.91 0.51 -0.67 
 (3.497) (2.049) (1.812) (0.686) (1.145) 
Enumerator FE YES YES YES YES YES 
Pseudo R-squared 0.13 0.10 0.09 - - 
R-squared - - - 0.37 0.10 
Model Logistic Logistic Logistic OLS OLS 
n (Plots) 649 701 701 650 650 

a Robust standard errors clustered at the household-level in parentheses. Models 4-5 estimated on a subset of plots that do not 
have clear or subjective overlaps. Some variables did not have sufficient variation, such as plot ownership and were dropped 
from the model. Full model results and models with household fixed effects in Tables B2-B5 in Appendix B. 
*** p<0.01, ** p<0.05, * p<0.10
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Figure 4: Reported versus estimated plot sizea 

 
a Solid line plots a 45 degree line. Kernel density plots present plots less than 7 acres. Kolmogorov-Smirnov test for equality of distributions is significant at p<0.01.
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Appendix A: Measurement methods 
 
Table A1 outlines the main methods for measuring agricultural plot sizes. The table is adapted from 
information from Keita et al. (2010), Fermont and Benson (2011), and USAID’s Feed the Future 
Agricultural Indicators Guide (Nelson and Swindale, 2013). 
 
Table A1: Methods for measuring plot size 

Method Description Advantages Disadvantages 
Tape and 
compass 

The “gold standard” for plot 
measurement. Method employs 
tape and compass to measure the 
sides of a plot and the angles of the 
corners to calculate total plot area. 
Can be used for irregularly shaped 
plots, although to do so measuring 
multiple polygons may necessary.  

The gold standard for 
plot area 
measurement. 
Equipment is 
inexpensive (i.e., 
measuring tape and 
compass).  

Can be extremely 
time consuming, 
especially when there 
are multiple plots or 
if plots are irregularly 
shaped. May require 
substantial training to 
minimize error. 

GPS 
measurement 

This method uses Global 
Positioning Systems devices to 
walk around plots for area 
measurement. Can be used for 
irregular plots. Plot measurements 
are taken when the GPS device 
connects with at least three 
satellites to measure latitude, 
longitude, and elevation. The 
enumerator will start at one corner 
of the field plot and walk fully 
around the perimeter. The average 
unit is accurate within 10–12 
meters. 

Time savings can be 
substantial, with 
some estimates being 
300 percent 
compared to tape and 
compass methods 
(Fermont and Benson 
2011). 

Measurements are 
largely accurate, but 
for smaller plots this 
method may be 
limited. Weather, plot 
slope, and tree 
canopy cover may 
also disturb 
measurement.  

Remote 
sensing 

Using remotely sensed images to 
identify plots.  

Can save time and 
money by avoiding 
direct measurement 
of plots. 

If images are not high 
resolution it may be 
difficult to identify 
plots, especially small 
plots.  

Direct farmer 
estimation 

Relies on interviewing farmers and 
asks for estimates of plot size.  

Can save time and 
money by avoiding 
direct measurement 
of plots.  

Relies on farmers 
trusting enumerators, 
and farmers that lack 
formal education and 
quantitative skills 
may not be able to 
accurately report plot 
size (De Groote and 
Traoré 2005). Data 
quality also affected 
by size of the plot. 
Further, reported plot 
size may be “lumpy” 
– in other words, 
respondents may 
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choose to answer in 
fixed unit increments 
for simplicity (David 
1978). 

Pacing Method is often employed when 
respondents themselves may have 
low skills or knowledge to answer 
accurately about plot size. 
Measurements are taken by using 
the individual’s pace, where one 
step is one unit. These paces are 
then converted to standard units. 

Cheapest method that 
requires little to no 
skill.  

Prone to error as an 
individual’s pace can 
vary significantly by 
slope, season, or 
stability of the ground 
(levelness). 
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Appendix B: Regression tables 
 

  Table B1: Logistic regression for successfully drawing polygona 

 (1) (2) (3) (4) 
Female -0.28 -0.15 -0.07 - 
 (0.372) (0.415) (0.497) - 
Age -0.01 -0.01 -0.02 - 
 (0.008) (0.009) (0.010) - 
Married 0.35 0.13 0.23 - 
 (0.382) (0.436) (0.515) - 
Secondary school -0.23 -0.34 -0.32 - 
 (0.232) (0.245) (0.271) - 
Is a farmer 0.99*** 1.02*** 0.90** - 
 (0.298) (0.300) (0.353) - 
Is HH head -0.17 -0.01 0.02 - 
 (0.376) (0.381) (0.446) - 
Asset index - 0.11 0.14 - 
 - (0.075) (0.093) - 
Household size - 0.16** 0.15** - 
 - (0.066) (0.073) - 
HH gender composition - -0.70 -1.24 - 
 - (0.735) (0.829) - 
Number of HH plots - -0.06 -0.18 - 
 - (0.110) (0.129) - 
Owns plot - - 1.53*** 1.21*** 
 - - (0.523) (0.369) 
Self-reported plot size - - -0.17** -0.14** 
 - - (0.075) (0.059) 
Cropland - - 0.75* 0.16 
 - - (0.406) (0.368) 
Forest - - 0.59 0.03 
 - - (0.648) (0.559) 
Livestock field - - 1.07* 0.61 
 - - (0.565) (0.480) 
Fallow - - 0.55 -0.09 
 - - (0.559) (0.530) 
Distance to plot - - -0.09*** -0.06*** 
 - - (0.025) (0.011) 
 (1.267) (1.438) (1.237) - 
Constant 1.10 0.76 0.12 - 
 (0.831) (1.034) (1.238) - 
Enumerator FE YES YES YES NO 
Household FE NO NO NO YES 
Observations 1,160 1,160 1,160 1,159 
Pseudo R-squared 0.25 0.26 0.37 0.07 

          a Robust standard errors in parentheses 
   *** p<0.01, ** p<0.05, * p<0.10
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Table B2: Logistic regression for plot boundary qualitya 
 (1) (2) (3) 
 

Clear overlap Subjective overlap 
Clear and Subjective 

overlap 
Female -0.42 0.85 0.46 
 (1.081) (0.592) (0.597) 
Age 0.01 0.02 0.01 
 (0.018) (0.011) (0.011) 
Married -0.83 1.28* 0.83 
 (0.842) (0.607) (0.561) 
Secondary school -0.49 -0.46 -0.46 
 (0.741) (0.326) (0.312) 
Is a farmer 1.70 -0.65 -0.35 
 (1.440) (0.438) (0.415) 
Is HH head -0.63 -0.24 -0.39 
 (1.180) (0.587) (0.572) 
Asset index 0.09 0.13 0.12 
 (0.154) (0.087) (0.080) 
Household size 0.04 -0.10 -0.08 
 (0.184) (0.119) (0.105) 
HH gender composition 1.94 -0.95 -0.22 
 (1.912) (0.963) (0.922) 
Number of HH plots -0.37 -0.07 -0.11 
 (0.312) (0.145) (0.137) 
Owns plot - - - 
 - - - 
Self-reported plot size -0.12 -0.18 -0.14 
 (0.315) (0.200) (0.165) 
Cropland -0.24 0.09 -0.08 
 (0.708) (1.019) (0.800) 
Forest - - - 
 - - - 
Livestock field -1.20*** -1.01 -1.14 
 (0.409) (1.134) (0.854) 
Fallow - -0.12 -0.56 
 - (1.245) (1.106) 
Distance to plot 0.02 0.04*** 0.05* 
 (0.019) (0.014) (0.025) 
Constant -3.96 -2.32 -1.91 
 (3.497) (2.049) (1.812) 
Enumerator FE YES YES YES 
Observations 649 701 701 
Pseudo R-squared 0.13 0.10 0.09 

a Robust standard errors in parentheses. Some variables did not have sufficient variation, such as plot ownership and 
were dropped from the model. 
*** p<0.01, ** p<0.05, * p<0.10
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Table B3: Logistic regression for plot boundary quality with household fixed effectsa 
 (1) (2) (3) 
 

Clear overlap Subjective overlap 
Clear and Subjective 

overlap 
Owns plot 0.03 0.11 0.14 
 (0.048) (0.091) (0.097) 
Self-reported plot size -0.00 -0.00 -0.00 
 (0.007) (0.014) (0.015) 
Cropland -0.02 0.02 -0.00 
 (0.035) (0.066) (0.071) 
Forest -0.05 -0.12 -0.17 
 (0.057) (0.108) (0.116) 
Livestock field -0.02 -0.03 -0.05 
 (0.043) (0.081) (0.087) 
Fallow -0.04 0.02 -0.03 
 (0.051) (0.097) (0.105) 
Distance to plot 0.00 0.00** 0.00** 
 (0.001) (0.002) (0.002) 
Constant 0.02 -0.03 -0.01 
 (0.059) (0.112) (0.121) 
Household FE YES YES YES 
Observations 731 731 731 
Pseudo R-squared 0.02 0.02 0.02 

a Robust standard errors in parentheses. Some variables did not have sufficient variation, such as plot 
ownership and were dropped from the model. 
*** p<0.01, ** p<0.05, * p<0.10
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   Table B4: Linear regression for the absolute difference between self-reported and  
   estimated plot size 

 (1) (2) (3) (4) 
Female -0.04 -0.03 0.03 - 
 (0.185) (0.170) (0.135) - 
Age 0.00 0.00 0.00 - 
 (0.003) (0.003) (0.002) - 
Married -0.10 -0.10 -0.05 - 
 (0.219) (0.225) (0.180) - 
Secondary school 0.03 -0.02 -0.00 - 
 (0.075) (0.087) (0.066) - 
Is a farmer 0.08 0.08 0.04 - 
 (0.144) (0.161) (0.107) - 
Is HH head 0.05 0.10 0.01 - 
 (0.184) (0.171) (0.153) - 
Asset index - 0.05*** -0.01 - 
 - (0.020) (0.022) - 
Household size - 0.01 0.01 - 
 - (0.022) (0.014) - 
HH gender composition - -0.34 -0.16 - 
 - (0.429) (0.284) - 
Number of HH plots - -0.08*** -0.01 - 
 - (0.030) (0.028) - 
Owns plot - - -0.70 -0.63*** 
 - - (0.639) (0.189) 
Self-reported plot size - - 0.51*** 0.50*** 
 - - (0.142) (0.031) 
Cropland - - 0.13 0.17 
 - - (0.231) (0.148) 
Forest - - 0.61 0.65*** 
 - - (0.620) (0.233) 
Livestock field - - 0.31 0.24 
 - - (0.365) (0.178) 
Fallow - - 0.24 0.21 
 - - (0.251) (0.216) 
Distance to plot - - -0.00 0.00 
 - - (0.009) (0.006) 
Constant 0.03 0.40 0.51 0.53** 
 (0.309) (0.365) (0.686) (0.242) 
Household FE NO NO NO YES 
Enumerator FE YES YES YES NO 
Observations 650 650 650 650 
R-squared 0.05 0.07 0.37 0.34 

     a Robust standard errors in parentheses. All models estimated on a subset of plots  
   that do not have clear or subjective overlaps. 
    *** p<0.01, ** p<0.05, * p<0.10 
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   Table B5: Linear regression for relative difference in plot sizea 
 (1) (2) (3) (4) 
Female 0.50 0.48 0.43 - 
 (0.630) (0.589) (0.588) - 
Age -0.01 -0.00 -0.00 - 
 (0.011) (0.011) (0.011) - 
Married 0.51 0.49 0.47 - 
 (0.579) (0.574) (0.578) - 
Secondary school 0.28 0.37 0.34 - 
 (0.237) (0.262) (0.263) - 
Is a farmer -0.10 -0.09 -0.03 - 
 (0.273) (0.269) (0.264) - 
Is HH head -0.57 -0.65 -0.67 - 
 (0.429) (0.452) (0.444) - 
Asset index - -0.10 -0.08 - 
 - (0.080) (0.086) - 
Household size - -0.00 0.01 - 
 - (0.073) (0.072) - 
HH gender composition - 0.55 0.49 - 
 - (0.932) (0.927) - 
Number of HH plots - 0.15 0.09 - 
 - (0.110) (0.122) - 
Owns plot - - -0.47 -1.05 
 - - (0.368) (0.810) 
Self-reported plot size - - -0.28* -0.15 
 - - (0.149) (0.132) 
Cropland - - -0.36 -0.51 
 - - (0.434) (0.632) 
Forest - - -0.08 -0.10 
 - - (0.784) (0.994) 
Livestock field - - 0.04 -0.01 
 - - (0.579) (0.762) 
Fallow - - 0.58 0.63 
 - - (0.504) (0.924) 
Distance to plot - - 0.02 0.01 
 - - (0.050) (0.027) 
Constant -0.86 -1.64* -0.67 0.53 
 (0.762) (0.918) (1.145) (1.033) 
Household FE NO NO NO YES 
Enumerator FE YES YES YES NO 
Observations 650 650 650 650 
R-squared 0.09 0.09 0.10 0.01 

     a Robust standard errors in parentheses. All models estimated on a subset of plots  
   that do not have clear or subjective overlaps. Relative plot size is calculated 
   as		(#$%& − ($)*(+$,	)%*+	-./$ − 0-+.12+$,	)%*+	-./$) 0-+.12+$,	)%*+	-./$⁄ . 
   *** p<0.01, ** p<0.05, * p<0.10 
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Appendix C: Land cover comparison 
 
We also compared land cover classifications identified by spatial and survey data. We 

unfortunately were not able to ground truth land cover on plots, so we rely on remotely sensed land cover 
data instead. While land cover data are not the same as ground truthed data, the land cover classification 
product has high accuracy with ground truthed data.  

We identified land cover using a supervised classification process in ArcGIS Feature Analyst on 
Pleiades satellite imagery with 0.5 m pan-sharpened spatial resolution. The imagery was collected on June 
22, 2015, right after the harvest season and shortly before the survey implementation. We utilized 326 
ground control points with measured land cover and agricultural practices (collected during two weeks of 
field work in June 2015). Ground control points were used in training the land cover classification. We 
focused on four land cover categories: trees, vegetated cropland, grass fields, and non-vegetated cropland 
(temporarily bare cropland/recently planted or harvested cropland). Producer accuracy (or the probability 
that a randomly selected pixels is classified correctly) of land cover classifications varied, but the overall 
accuracy was 81 percent although this varied by land cover type. The producer accuracy is 91 percent for 
vegetated cropland, 79 percent for non-vegetated cropland, 84 percent for grass fields, and 74 percent for 
trees. Thomlinson et al. (1999) establish an overall accuracy target of 85 percent, with each category 
having an accuracy of 75 percent or greater. Given the spatial heterogeneity and small plot size of our 
study area, we believe 81 percent accuracy to be reasonably high. 

We focus on four land cover types: trees, vegetated cropland, grass fields, and non-vegetated 
cropland (temporarily bare cropland/recently planted or harvested cropland). Plots were identified as 
being in a category if the survey data indicated the plot was used for crops, had forest, kept fallow, or was 
a field for livestock, while a separate variable identified land cover type from spatial data. We find that 
plots reported as vegetated cropland in the survey have the largest proportion of overlap (95 percent, see 
Table 2). Trees, non-vegetated cropland, and grass fields had low congruence with remotely sensed land 
cover data with overlap at 29, 19, and 12 percent, respectively. But even with vegetated cropland we find 
the reliability of survey responses to be low. For instance, approximately 27 percent of plots identified as 
vegetated cropland in the survey were not identified as crops in the spatial data (n=162), and 75 percent of 
plots that were reportedly not cropland in the survey were spatially identified as being cropland. 
Correlations between land cover classifications from spatial and survey data are also extremely low, as no 
classification has correlation coefficients above 0.15.  

These results have several implications. The results suggest ground truthing are needed to verify 
land cover data from surveys, as our results indicate survey data may grossly misclassify land cover for 
small agricultural plots. The spatial land classification’s accuracy assessment suggests the spatial land 
cover classification is highly reliability, so we believe our findings raise considerable questions about 
land cover questions in survey data for small agricultural plots. The probability of misclassifying land 
cover in the spatial data and survey data is extremely low. For instance, a 1.2 acre plot (0.5 hectares) at 
2.5 meter resolution consists of approximately 20,000 pixels; since only a single pixel is required to 
constitute a match with the survey data (indicating a given land cover type is "present"), the probability of 
misclassifying land cover in all pixels is close to zero. Spatial land cover classifications and household 
survey land cover data are likely to operate at different levels (pixel vs. plot). For instance, respondents 
may not identify a plot with a small patch of grass as having grass cover in the survey. This suggests 
future work should ensure survey questions have greater alignment with spatial data and take into account 
mixed land cover/use in a single plot (e.g., asking about the proportion of the plot with grass cover).  
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Table C1: Plot land cover congruence by land cover classificationa 
 Vegetated 

cropland Trees 
Non-vegetated 

croplandb 
Grass 
fields 

 (1) (2) (3) (4) 
Self-reported plot land cover (# plots) 450 75 51 55 
Spatially identified land cover (# plots) 474 258 267 457 
% match 95 29 19 12 
!	coefficient 0.01 0.11 0.14 0.04 

a Data were limited to high quality plots (n=650). Spatially identified land cover indicates the presence of each land 
cover type on a given plot, with multiple land covers possible on a single plot. 
b This classification includes temporarily bare cropland/recently planted or harvested cropland 
 


